Respuesta :
Answer:
2
Step-by-step explanation:
Here, the given function is,
f(x) = The quantity of 4x plus 1, divided by 3
[tex]\implies f(x)=\frac{4x+1}{3}[/tex]
The steps that involve in finding the inverse of f(x) are as follows,
Step 1 : Replace f(x) by y,
[tex]y=\frac{4x+1}{3}[/tex]
Step 2 : Switch x and y,
[tex]x=\frac{4y+1}{3}[/tex]
Step 3 : Isolate y in the left side of the equation,
[tex]3x=4y+1[/tex]
[tex]-4y=1-3x[/tex]
[tex]y=\frac{1-3x}{-4}[/tex]
[tex]y=\frac{3x-1}{4}[/tex]
Step 4 : Replace y by [tex]f^{-1}(x)[/tex],
[tex]f^{-1}(x)=\frac{3x-1}{4}[/tex]
For x = 3,
[tex]f^{-1}(3)=\frac{3\times 3-1}{4}=\frac{9-1}{4}=\frac{8}{4}=2[/tex]
Hence, First option is correct.