Answer:
How long is the [shirt] in the air? 3 seconds
How many seconds after launching is the t-shirt at 17 feet? 0.25 seconds
Step-by-step explanation:
Formula to represent the shirt's flight path (given): [tex]h=-16t^2+vt+c[/tex], where [tex]h[/tex] is the height of the shirt, [tex]v[/tex] is the initial velocity of the shirt, [tex]c[/tex] is the shirt's starting height, and [tex]t[/tex] is elapsed time since launch.
The function forms a parabola concave down. Since the shirt is caught at 17 feet, we want to second x-coordinate of a point with a y-coordinate of 17 that the function passes through. This is because the shirt was caught going down, not up.
Therefore, let [tex]h=17[/tex]:
[tex]17=-16t^2+52t+5,\\\\-16t^2+52t-12=0,\\\\ y= \frac{-52\pm\sqrt{52^2-4(-16)(-12)}}{2(-16)},\\\\y=\frac{1}{4},\boxed{y=3}[/tex].
The second x-coordinate is the larger of the two and therefore the shirt was in the air for 3 seconds.
However, the first time the shirt reaches a height of 17 feet is on its way up, which occurs at 1/4 or 0.25 seconds (the first x-coordinate). Therefore, the t-shirt reached a height of 17 feet 0.25 seconds after launching.