Answer:
9.52%
Explanation:
Calculation to determine the expected return on an equally weighted portfolio of these three stocks
Return of portfolio Boom = - 0.11 + 0.23 + 0.26 /3
Return of portfolio Boom= 0.38/3
Return of portfolio Boom=12.67%
ALTERNATIVE :
Weights= 1/3
Weight = 0.33333
(0.33333× -0.11)+ (0.33333 × 0.23)+( 0.33333 × 0.26)
= - 0.03667 + 0.07667 + 0.08667
= 12.67%
Return of portfolio Bust = 0.16 + 0.03 + (-0.08)
Return of portfolio Bust=0.11/3
Return of portfolio Bust = 3.67%
Alternative =( 0.33333 × 0.16) + (0.3333× 0.03) + (0.33333 × -0.08(
Alternative= 0.05333 + 0.00999 + (0.02667)
Alternative= 3.67%
Expected return of portfolio = (0.65 × 0.1267) + (0.35 × 0.0367)
Expected return of portfolio=0.082355 + 0.012845
Expected return of portfolio=0.0952*100
Expected return of portfolio = 9.52%
Therefore the expected return on an equally weighted portfolio of these three stocks will be 9.52%