Respuesta :

[tex] \huge \mathrm{ \underline{ \underline{Àñswér}}}[/tex]

The Area of Shaded region is equal to the difference in Area of rectangle and Area of triangle .

let's solve for area of rectangle :

[tex]➢ \: \: length \times width[/tex]

[tex] \longrightarrow8 \times 3x[/tex]

[tex] \longrightarrow24x[/tex]

Now, Area of Triangle :

[tex]➢ \: \dfrac{1}{2} \times base \times height[/tex]

[tex] \longrightarrow \dfrac{1}{2} \times 4 \times x[/tex]

[tex] \longrightarrow2x[/tex]

So, the area of the shaded region in terms of x :

[tex] \longrightarrow24x - 2x[/tex]

[tex] \longrightarrow22x[/tex]

And since, Area of Shaded region = 44 cm²

By equating the area, we get

[tex] \large \boxed{ \boxed{22x = 44}}[/tex]

Value of x = 2

[tex] \mathrm{✌TeeNForeveR✌}[/tex]

22x=24 because you times it