Answer:
[tex]a_{n+1} = a_n \times 2[/tex]
OR
[tex]a_n = 3 \times 2^{n-1}[/tex]
Step-by-step explanation:
a1 = 3
a2 = 3 x 2 = 6 [ a1 x 2 ]
a3 = 6 x 2 = 12 [ a2 x 2]
a4 = 12 x 2 = 24 [ a3 x 2 ]
a5 = 24 x 2 = 48 [ a4 x 2 ]
Therefore the recursive formula is :
[tex]a_{n+1} = a_n \times 2[/tex]
OR
[tex]a_1 = 3 \times 2^{0}\\\\a_2 = 3 \times 2^1\\\\a_3 = 3 \times 2 ^2\\\\\\Therefore , a_n = 3 \times 2^{n-1}[/tex]