Respuesta :

Given:

The figure of a right angle triangle with legs a and 7, and hypotenuse c.

The measure of angle opposite to leg 7 is 30^\circ.

To find:

All the missing measures for the triangle.

Solution:

According to the angle sum property, the sum of all interior angles of a triangle is 180 degrees. So,

[tex]30^\circ+90^\circ+\text{Missing angle}=180^\circ[/tex]

[tex]120^\circ+\text{Missing angle}=180^\circ[/tex]

[tex]\text{Missing angle}=180^\circ-120^\circ[/tex]

[tex]\text{Missing angle}=60^\circ[/tex]

In a right angle triangle ,

[tex]\sin\theta=\dfrac{Perpendicular}{Hypotenuse}[/tex]

[tex]\sin (30^\circ)=\dfrac{7}{c}[/tex]

[tex]\dfrac{1}{2}=\dfrac{7}{c}[/tex]

[tex]c=7\times 2[/tex]

[tex]c=14[/tex]

In a right angle triangle,

[tex]\tan \theta =\dfrac{Perpendicular}{Base}[/tex]

[tex]\tan (30^\circ)=\dfrac{7}{a}[/tex]

[tex]\dfrac{1}{\sqrt{3}}=\dfrac{7}{a}[/tex]

[tex]a=7\times \sqrt{3}[/tex]

[tex]a=7\sqrt{3}[/tex]

Therefore, the measure of the missing angle is 60 degrees. Side "a" has a length of 14 units and side "c" has a length of [tex]7\sqrt{3}[/tex] units.