Respuesta :

Given:

Focus of the parabola = (5,6)

Directrix of the parabola is y=2.

To find:

The equation of the parabola.

Solution:

The equation of the parabola is:

[tex](x-h)^2=4p(y-k)[/tex]             ...(i)

Where, (h,k) is vertex, (h,k+p) is focus and [tex]y=k-p[/tex] is the directrix.

It is given that the focus of the parabola is at (5,6).

[tex](h,k+p)=(5,6)[/tex]

On comparing both sides, we get

[tex]h=5[/tex]

[tex]k+p=6[/tex]            ...(ii)

Directrix of the parabola is y=2. So,

[tex]k-p=2[/tex]             ...(iii)

Adding (ii) and (iii), we get

[tex]2k=8[/tex]

[tex]k=\dfrac{8}{2}[/tex]

[tex]k=4[/tex]

Putting [tex]k=4[/tex] in (ii), we get

[tex]4+p=6[/tex]

[tex]p=6-4[/tex]

[tex]p=2[/tex]

Putting [tex]h=5,k=4, p=2[/tex] in (i), we get

[tex](x-5)^2=4(2)(y-4)[/tex]

[tex](x-5)^2=8(y-4)[/tex]

Therefore, the equation of the parabola is [tex](x-5)^2=8(y-4)[/tex].