Respuesta :

[tex]\huge\bold{Given:}[/tex]

Length of the book (hypotenuse) = 13 inches

Distance of the book from the foot of the wall (base) = 5 inches

[tex]\huge\bold{To\:find:}[/tex]

Length of the book on the wall (perpendicular ''[tex]x[/tex]").

[tex]\large\mathfrak{{\pmb{\underline{\orange{Solution}}{\orange{:}}}}}[/tex]

[tex]\longrightarrow{\purple{x\:=\:12\:inches}}[/tex] 

[tex]\large\mathfrak{{\pmb{\underline{\red{Step-by-step\:explanation}}{\red{:}}}}}[/tex]

By Pythagoras theorem, we have

(Perpendicular)² + (Base)² = (Hypotenuse)²

[tex]\longrightarrow{\blue{}}[/tex]  [tex]{x}^{2}[/tex] + (5 in) ² = (13 in)²

[tex]\longrightarrow{\blue{}}[/tex] [tex]{x}^{2}[/tex] + 25 in² = 169 in²

[tex]\longrightarrow{\blue{}}[/tex]  [tex]{x}^{2}[/tex] = 169 in² - 25 in²

[tex]\longrightarrow{\blue{}}[/tex]  [tex]{x}^{2}[/tex] = 144 in²

[tex]\longrightarrow{\blue{}}[/tex]  [tex]x[/tex] = [tex] \sqrt{144 \: {in}^{2} } [/tex]

[tex]\longrightarrow{\blue{}}[/tex]  [tex]x[/tex] = [tex] \sqrt{12 \times 12 \: {in}^{2} } [/tex]

[tex]\longrightarrow{\blue{}}[/tex]  [tex]x[/tex] = [tex] \sqrt{ ({12 \: in})^{2} } [/tex]

[tex]\longrightarrow{\blue{}}[/tex]  [tex]x[/tex] = 12 in

Therefore, the height of the book on the wall [tex]x[/tex] is 12 inches.

[tex]\huge{\textbf{\textsf{{\orange{My}}{\blue{st}}{\pink{iq}}{\purple{ue}}{\red{35}}{\green{☂}}}}}[/tex]

Ver imagen Аноним