[tex]\huge\bold{Given:}[/tex]
Length of the book (hypotenuse) = 13 inches
Distance of the book from the foot of the wall (base) = 5 inches
[tex]\huge\bold{To\:find:}[/tex]
Length of the book on the wall (perpendicular ''[tex]x[/tex]").
[tex]\large\mathfrak{{\pmb{\underline{\orange{Solution}}{\orange{:}}}}}[/tex]
[tex]\longrightarrow{\purple{x\:=\:12\:inches}}[/tex]
[tex]\large\mathfrak{{\pmb{\underline{\red{Step-by-step\:explanation}}{\red{:}}}}}[/tex]
By Pythagoras theorem, we have
(Perpendicular)² + (Base)² = (Hypotenuse)²
[tex]\longrightarrow{\blue{}}[/tex] [tex]{x}^{2}[/tex] + (5 in) ² = (13 in)²
[tex]\longrightarrow{\blue{}}[/tex] [tex]{x}^{2}[/tex] + 25 in² = 169 in²
[tex]\longrightarrow{\blue{}}[/tex] [tex]{x}^{2}[/tex] = 169 in² - 25 in²
[tex]\longrightarrow{\blue{}}[/tex] [tex]{x}^{2}[/tex] = 144 in²
[tex]\longrightarrow{\blue{}}[/tex] [tex]x[/tex] = [tex] \sqrt{144 \: {in}^{2} } [/tex]
[tex]\longrightarrow{\blue{}}[/tex] [tex]x[/tex] = [tex] \sqrt{12 \times 12 \: {in}^{2} } [/tex]
[tex]\longrightarrow{\blue{}}[/tex] [tex]x[/tex] = [tex] \sqrt{ ({12 \: in})^{2} } [/tex]
[tex]\longrightarrow{\blue{}}[/tex] [tex]x[/tex] = 12 in
Therefore, the height of the book on the wall [tex]x[/tex] is 12 inches.
[tex]\huge{\textbf{\textsf{{\orange{My}}{\blue{st}}{\pink{iq}}{\purple{ue}}{\red{35}}{\green{☂}}}}}[/tex]