Answer: Mean weight = 2.81 N and Measurement of uncertainty = 0.82 N
Explanation:
Mean = [tex]\dfrac{\text{Sum of observations}}{\text{number of observations}}[/tex]
Mean weight is [tex]($\mu)=\frac{2.8+2.6+2.9+3.1+2.4+2.9+3.2+2.5+2.7+3.0}{10}[/tex]
[tex]=2.81$[/tex]
[tex]$\sum_{i=1}^{10}\left(x_{i}-\mu\right)^{2}=0.61[/tex]
[tex]$\sigma=\sqrt{\frac{1}{N-1} \sum_{i=1}^{10}\left(x_{i}-\mu\right)^{2}}[/tex]
[tex]=\sqrt{\frac{1}{10-1} 0.61}=0.082$[/tex]
Measurement of uncertainty will be [tex]$\sigma=0.082$[/tex]
hence, Weight [tex]$W=2.81 \pm 0.082 N$[/tex]