(15 PTS) An observer riding on the platform measures the angle q that the thread supporting the light ball makes with the vertical. There is no friction anywhere. If you can vary m1 and m2, find the largest angle q you could achieve.

Respuesta :

Solution :

 Given :

Angle q = angle between the thread supporting the ball with the vertical.

Let mass [tex]$m_1 >>>m_2$[/tex].

Then [tex]$m_1+m_2=m_1$[/tex]

In this case, acceleration can be found out by applying Newton's law of motion.

Thus,

Acceleration, [tex]$a=\frac{m_1}{m_1+m_2}. g$[/tex]

                      [tex]$a=\frac{m_1}{m_1}. g$[/tex]

                       [tex]$a=g$[/tex]

Therefore, [tex]$\tan \theta =\frac{a}{g}$[/tex]

or                [tex]$\tan \theta =\frac{a}{a}$[/tex]

or                [tex]$\tan \theta =1$[/tex]

                   [tex]$\theta = \tan ^{-1}(1)$[/tex]

                   [tex]$\theta = 45^\circ$[/tex]

Therefore the largest angle q is  [tex]$\theta = 45^\circ$[/tex]

Ver imagen AbsorbingMan