Respuesta :

Answer:

[tex]x=-16\text{ or } x=7[/tex]

Step-by-step explanation:

Since ΔABC is mapped onto ΔDEF, we can write that:

[tex]\Delta ABC\cong \Delta DE F[/tex]

By CPCTC:

[tex]\angle A\cong \angle D[/tex]

And since ΔABC is isosceles with Vertex C:

[tex]\angle A \cong \angle B[/tex]

We are given that:

[tex]m\angle D=34[/tex]

Hence:

[tex]m\angle A=34=m\angle B[/tex]

We are also given that:

[tex]m\angle C=x^2+9x[/tex]

The interior angles of a triangle must sum to 180°. Thus:

[tex]m\angle A+m\angle B+m\angle C=180[/tex]

Substitute:

[tex](34)+(34)+(x^2+9x)=180[/tex]

Simplify:

[tex]68+x^2+9x=180[/tex]

Isolate the equation:

[tex]x^2+9x-112=0[/tex]

Factor:

[tex](x+16)(x-7)=0[/tex]

Zero Product Property:

[tex]x+16=0\text{ or } x-7=0[/tex]

Solve for each case:

[tex]x=-16\text{ or } x=7[/tex]

Testing the solutions, we can see that both yields C = 112°.

Hence, our solutions are:

[tex]x=-16\text{ or } x=7[/tex]