Respuesta :

Given:

In a right angle triangle, the measure of exterior angle is [tex](9x+16)^\circ[/tex].

The measure of opposite interior angle is [tex](5x-14)^\circ[/tex].

To find:

The value of x.

Solution:

Exterior angle theorem: In a triangle the measure of an exterior angle is equal to the measure of sum of two interior angles.

Using exterior angle theorem, we get

[tex](9x+16)^\circ=90^\circ+(5x-14)^\circ[/tex]

[tex](9x+16)^\circ=(5x+76)^\circ[/tex]

[tex]9x+16=5x+76[/tex]

Isolate the variable x.

[tex]9x-5x=-16+76[/tex]

[tex]4x=60[/tex]

[tex]x=\dfrac{60}{4}[/tex]

[tex]x=15[/tex]

The value of x is 15. So, the measure of the exterior angle is:

[tex](9x+16)^\circ=(9(15)+16)^\circ[/tex]

[tex](9x+16)^\circ=(135+16)^\circ[/tex]

[tex](9x+16)^\circ=151^\circ[/tex]

Therefore, the value of x is 15 and the measure of the exterior angle is 151 degrees.