Answer:
The sequence converges to 1.
Step-by-step explanation:
Sequence 2/4, 3/5, 4/6, 5/7
This sequence can be summarized as:
[tex]\sum_{n=0}^{\infty} \frac{n+2}{n+4}[/tex]
To test if it converges, we can calculate the limite of [tex]\frac{n+2}{n+4}[/tex] as n goes to infinite.
Limit:
[tex]\lim_{n \rightarrow \infty} \frac{n+2}{n+4}[/tex]
Considering only the terms with the highest exponent in the numerator and the denominator:
[tex]\lim_{n \rightarrow \infty} \frac{n+2}{n+4} = \lim_{n \rightarrow \infty} \frac{n}{n} = \lim_{n \rightarrow \infty} 1 = 1[/tex]
Thus, the sequences converges to 1.