Answer:
[tex]x_1 = -t[/tex]
[tex]x_2 = s[/tex]
[tex]x_3 = 0[/tex]
[tex]x_4 = t[/tex]
Step-by-step explanation:
Given
[tex]\left[\begin{array}{cccc}1&0&0&1\\0&0&1&0\\0&0&0&0\end{array}\right][/tex]
Required
Determine x1 to x4
First, we write the augmented matrix
[tex]\left[\begin{array}{cccc}1&0&0&1\\0&0&1&0\\0&0&0&0\end{array}\right] = \left[\begin{array}{c}0&0&0\end{array}\right][/tex]
Taking the position of each column, we have:
[tex]x_1 + 0 + 0 +x_4 = 0[/tex]
[tex]0 + 0 + x_3 +0 = 0[/tex]
[tex]0 + 0 + 0 + 0 = 0[/tex]
There is no explicit equation for [tex]x_2[/tex]
So: [tex]x_2 = s[/tex] ----- arbitrary variable
[tex]x_1 + 0 + 0 +x_4 = 0[/tex] implies that:
[tex]x_1 + x_4 = 0[/tex]
[tex]0 + 0 + x_3 +0 = 0[/tex] implies that
[tex]x_3 = 0[/tex]
[tex]0 + 0 + 0 + 0 = 0[/tex] implies that
[tex]0 = 0[/tex]
So, we have:
[tex]x_1 + x_4 = 0[/tex]
[tex]x_3 = 0[/tex]
[tex]x_1 + x_4 = 0[/tex] becomes
[tex]x_1 = -x_4[/tex]
Let
[tex]x_4 = t[/tex]
So:
[tex]x_1 = -x_4[/tex]
[tex]x_1 = -t[/tex]
Where t , s are real numbers