Answer:
4.60 × 10⁻⁸
Explanation:
From the given information;
Assuming that q charges are transferred, then:
[tex]F = \dfrac{kq^2}{d^2}[/tex]
where;
k = 9 ×10⁹
[tex]900000 = \dfrac{9*10^9 \times q^2}{1.2^2}[/tex]
[tex]q = \sqrt{\dfrac{900000\times 1.2^2 }{9*10^9}}[/tex]
q = 0.012 C
No of the electrons transferred is:
[tex]= \dfrac{0.012}{1.6\times 10^{-19}} C[/tex]
[tex]= 7.5 \times 10^{16} \ C[/tex]
Initial number of electrons = N × 47 × no of moles
here;
[tex]\text{ no of moles }= \dfrac{6.2}{107.87}[/tex]
no of moles = 0.0575 mol
∴
Initial number of electrons = [tex]6.023\times 10^{23} \times 47 \times 0.0575 mol[/tex]
= 1.63 × 10²⁴
The fraction of electrons transferred [tex]=\dfrac{7.5\times 10^{16} }{1.6 3\times 10^{24}}[/tex]
= 4.60 × 10⁻⁸