Use aâ t-test to test the claim about the population mean at the given level of significance using the given sample statistics. Assume the population is normally distributed.

Claim: μ>77; α=0.05
Sample statistics: xÌ =78.6,s=3.7,n=23

a. What are the null and alternative hypotheses?
b. What is the value of the standardized test statistic?
c. What is the P-value of the test statistic?

Respuesta :

Answer:

a)  NULL Hypothesis

    [tex]H_0:\mu \leq 77[/tex]

    ALTERNATIVE hypotheses

    [tex]H_0: \mu>77[/tex]

b) Therefore t Critical value from table X is

    [tex]X=\pm 1.717[/tex]

c)  Hence,we reject the Null hypothesis

Step-by-step explanation:

From the question we are told that:

Claim:

[tex]\mu=77[/tex]

Level of significance [tex]\alpha=0.05[/tex]

Sample mean [tex]\=x=78.6[/tex]

Sample Standard deviation [tex]\sigma=3.6[/tex]

Sample size [tex]n=23[/tex]

a)

Generally the equation for The null and alternative hypotheses is mathematically given by

NULL Hypothesis

[tex]H_0:\mu \leq 77[/tex]

ALTERNATIVE hypotheses

[tex]H_0: \mu>77[/tex]

b)

Generally the equation for The standardized test statistics t is mathematically given by

[tex]t=\frac{(\=x-\mu)}{\frac{\sigma}{\sqrt{n}}}[/tex]

[tex]t=\frac{(78.6-77)}{\frac{3.7}{\sqrt{23}}}[/tex]

[tex]t=2.03[/tex]

Therefore Critical Value X is

[tex]X=(\alpha,df)[/tex]

Where

[tex]df=(23-1)\\\\df=22[/tex]

Therefore t Critical value from table X is

[tex]X=\pm 1.717[/tex]

c)

The Test statistics is outside the Critical Value

Hence,we reject the Null hypothesis