Respuesta :

Solution :

Given a quadratic equation :

[tex]ax^2+bx+c = 0[/tex]

Step 1 : [tex]ax^2+bx+c = 0[/tex]

Step 2 : [tex]ax^2+bx=-c[/tex]

Step 3 :  [tex]$x^2+\frac{b}{a}x = -\frac{c}{a}$[/tex]

Step 4 : [tex]$x^2+\left(\frac{b}{2a}\right)^2=\left(\frac{b}{2a}\right)^2\left(\frac{-c}{a}\right)$[/tex]

Step 5 : [tex]$\left(x+\frac{b}{2a}\right)^2=\left(\frac{b}{2a}\right)^2\left(\frac{-c}{a}\right)$[/tex]

Step 6 : [tex]$\left(x+\frac{b}{2a}\right)=\sqrt{\left(\frac{b}{2a}\right)^2\left(\frac{-c}{a}\right)$[/tex]

Step 7 : [tex]$x=\sqrt{\left(\frac{b}{2a}\right)^2\left(\frac{-c}{a}\right)} - \frac{b}{2a}$[/tex]

Step 8 : [tex]$x= \frac{-b \pm \sqrt{b^2-4ac}}{2a}$[/tex]

Thus the derivation for finding the roots of a quadratic equations.

Answer:

B D A C

Step-by-step explanation:

Edge 2021