Respuesta :

Answer: [tex]\dfrac{7}{132}[/tex]

Step-by-step explanation:

Total marbles in the jar =  8+25 = 33

Using combinations, the number of ways of choosing two marbles out of 33=  [tex]\dfrac{33!}{2!(33-2)!}\\\\=\dfrac{33!}{2\times31!}\\\\=\dfrac{33\times32}{2}=528[/tex]  (total outcomes)

Similarly, the number of ways of choosing two red marbles =

[tex]\dfrac{8!}{2!6!}\\\\=\dfrac{8\times7}{2}=28[/tex](favorable outcomes)

Required probability = [tex]\dfrac{\text{favorable outcomes}}{\text{total outcomes}}[/tex]

[tex]=\dfrac{28}{528}\\\\=\dfrac{7}{132}[/tex]

hence, required probability = [tex]\dfrac{7}{132}[/tex]