Answer:
The 95% confidence interval is ( 27.126 , 34.674)
Step-by-step explanation:
Given
The t critical value at 0.05 level = 2.023 for the df = 39
Confidence interval = 95%
Mean
[tex]\bar{x} - t * \frac{s}{\sqrt{n} } < \mu < \bar{x} + t * \frac{s}{\sqrt{n} }[/tex]
Substituting the given values we get -
[tex]\30.9 - 2.023 * \frac{11.8}{\sqrt{40} } < \mu < \30.9 + 2.023 * \frac{11.8}{\sqrt{40} }\\27.126 < \mu < 34.674[/tex]
Hence, the 95% confidence interval is
( 27.126 , 34.674)