Respuesta :

Answer:

[tex]V=83.73\ in^3[/tex]

Step-by-step explanation:

The capsule is in the shape of two hemispheres and cylinder.

The volume of the container = volume of two hemispheres + volume of cylinder

The radius of the container, r = 2 in

Height of the cylindrical part, h = 8 in - 4 in = 4 in

So,

[tex]V=2\times \dfrac{2}{3}\pi r^3+\pi r^2 h\\\\=\dfrac{4}{3}\pi r^3+\pi r^2 h\\\\V=\pi r^2 (\dfrac{4}{3}r+h)[/tex]

Put all the values,

[tex]V=3.14\times 2^2 (\dfrac{4}{3}\times 2+4)\\\\V=83.73\ in^3[/tex]

So, the volume of the container is equal to [tex]83.73\ in^3[/tex].