Which of the following pairs of functions are inverses of each other

Answer:
[tex]f(x) = 5x -11[/tex] and [tex]g(x) = \frac{x + 11}{5}[/tex]
Step-by-step explanation:
Required
The inverse pairs
Solving (a):
[tex]f(x) = 5x -11[/tex] [tex]g(x) = \frac{x + 11}{5}[/tex]
Calculate the inverse of f(x)
[tex]f(x) = 5x -11[/tex]
Replace f(x) with y
[tex]y = 5x - 11[/tex]
Swap x and y
[tex]x = 5y - 11[/tex]
Solve for y
[tex]5y = x + 11[/tex]
[tex]y = \frac{x + 11}{5}[/tex]
So, we have:
[tex]g(x) = \frac{x + 11}{5}[/tex]
Hence, f(x) and g(x) in (a) are inverse functions
Others are not