Answer:
[tex]V = 518cm^3[/tex]
Step-by-step explanation:
Given
[tex]h = 15cm[/tex]
[tex]R = 6cm[/tex]
[tex]r =5cm[/tex]
Required
The volume of the remaining cylinder
Before the cut-out, the cylinder has a volume (V) of:
[tex]V = \pi R^2h[/tex]
After the cut-out, the cylinder has a volume of:
[tex]V = \pi [R^2 -r^2]h[/tex]
So, we have:
[tex]V = 3.14* [6^2 -5^2]*15[/tex]
[tex]V = 3.14* [36 -25]*15[/tex]
[tex]V = 3.14* 11*15[/tex]
[tex]V = 518cm^3[/tex]