A 285-kg load is lifted 22.0 m vertically with an acceleration a=0.160g by a single cable. Determine

(a) the tension in the cable, (b) the net work done on the load, (c) the work done by the cable on the

load, (d) the work done by gravity on the load, and (e) the final speed of the load assuming it started

from rest.​

Respuesta :

Answer:

a)  T = 2838.6 N,  b)   W = 1003.2 J,  c) W = 6.22 10⁴ J,  d) W = 2.79 10³ J

e) v_f = 2.65  m / s

Explanation:

a) To find the tension of the cable let's use Newton's second law

        T - W = m a

         T = W + ma

        T = m (g + a)

let's calculate

        T = 285 (-9.8 - 0.160)

        T = 2838.6 N

b) net work is stress work minus weight work

        W = F d

        W = (T-W) d

        W = (m a) d

        W = (285 0.160) 22

        W = 1003.2 J

 

c) the work done by the cable

         W = T d cos 0

          W = 2838.6 22.0

          W = 6.22 10⁴ J

d) The work done by the weight

the displacement is upwards and the weight points downwards, so the angle is 180º

        W = F. d

         W = F d cos 180

         W = -285 22.0

         W = 2.79 10³ J

e) the final speed of the load. Let's use the relationship between work and the change in kinetic energy

         W = ΔK

         

as part of rest K₀ = 0

          W = ½ m v_f²

          v_f = [tex]\sqrt{ \frac{2W}{m} }[/tex]

          v_f = [tex]\sqrt{\frac{2 \ 1003.2}{285} }[/tex]

          v_f = 2.65  m / s