Respuesta :

Given:

[tex]\sin \theta <0[/tex]

[tex]\tan \theta <0[/tex]

To find:

The quadrant in which [tex]\theta[/tex] lie.

Solution:

Quadrant concept:

In Quadrant I, all trigonometric ratios are positive.

In Quadrant II, only [tex]\sin\theta[/tex] and [tex]\csc\theta[/tex] are positive.

In Quadrant III, only [tex]\tan\theta[/tex] and [tex]\cot\theta[/tex] are positive.

In Quadrant IV, only [tex]\cos\theta[/tex] and [tex]\sec\theta[/tex] are positive.

We have,

[tex]\sin \theta <0[/tex]

[tex]\tan \theta <0[/tex]

Here, [tex]\sin\theta[/tex] is negative and [tex]\tan\theta[/tex] is also negative. It is possible, if [tex]\theta [/tex] lies in the Quadrant IV.

Therefore, the correct option is D.