Respuesta :

Given:

The function is:

[tex]f(x)=2x^2-14x+10[/tex]

The function g(x), the image of f(x) after a [tex]r_{y=x}[/tex] (reflection over the line y=x).

To find:

The function g(x).

Solution:

We have,

[tex]f(x)=2x^2-14x+10[/tex]

Substitute [tex]f(x)=y[/tex] in the given function.

[tex]y=2x^2-14x+10[/tex]

The function g(x), the image of f(x) after a [tex]r_{y=x}[/tex] (reflection over the line y=x). So, interchange x and y.

[tex]x=2y^2-14y+10[/tex]

Now, we need to find the value of y.

[tex]x=2(y^2-7y+5)[/tex]

[tex]\dfrac{x}{2}=y^2-7y+5[/tex]             [Divide both sides by 2]

[tex]\dfrac{x}{2}-5=y^2-7y[/tex]             [Subtract 5 from both sides]

Add both sides half of square of coefficient of y, i.e. [tex](\dfrac{-7}{2})^2[/tex], to make it perfect square.

[tex]\dfrac{x}{2}-5+(\dfrac{-7}{2})^2=y^2-7y+(\dfrac{-7}{2})^2[/tex]

[tex]\dfrac{x}{2}-5+\dfrac{49}{4}=y^2-7y+(\dfrac{7}{2})^2[/tex]

[tex]\dfrac{x}{2}-5+\dfrac{49}{4}=\left(y-\dfrac{7}{2}\right)^2[/tex]          [tex][\because (a-b)^2=a^2-2ab+b^2][/tex]

[tex]\dfrac{x}{2}+\dfrac{49-20}{4}=\left(y-\dfrac{7}{2}\right)^2[/tex]

Taking square root on both sides, we get

[tex]\pm\sqrt{\dfrac{x}{2}+\dfrac{29}{4}}=y-\dfrac{7}{2}[/tex]

[tex]\dfrac{7}{2}\pm\sqrt{\dfrac{2x+29}{4}}=y[/tex]

[tex]\dfrac{7}{2}\pm\dfrac{\sqrt{2x+29}}{2}=y[/tex]

[tex]\dfrac{7\pm \sqrt{2x+29}}{2}=y[/tex]

Substituting [tex]y=g(x)[/tex], we get

[tex]\dfrac{7\pm \sqrt{2x+29}}{2}=g(x)[/tex]

Therefore, the required function is [tex]g(x)=\dfrac{7\pm \sqrt{2x+29}}{2}[/tex].