(Find m∠RTS) m∠RTS=

Answer:
[tex]m\angle RTS=34^{\circ}[/tex]
Step-by-step explanation:
From the Isosceles Base Theorem, the two base angles of an Isosceles Triangle are equal. Therefore, [tex]m\angle RTS=m\angle TRS[/tex].
Since the sum of the interior angles of a triangle is 180 degrees, we have:
[tex]m\angle RTS +m\angle TRS+112=180,\\2\cdot m\angle RTS+112=180,\\2\cdot m\angle RTS=68,\\m\angle RTS=\boxed{34^{\circ}}[/tex]