f(x)=x^2+2x-4 and g(x)=3x+1 find

Answer:
Step-by-step explanation:
[tex]f(x)=x^2+2x-4\\g(x)=3x+1\\\\g\circ f(x)=g(f(x)=3(x^2+2x-4)+1=3x^2+6x-11[/tex]
Answer:
g(f(x)) = 3x^2 + 6x - 11.
Step-by-step explanation:
Replace the x in g(x) by f(x):
g(f(x)) = 3(x^2 + 2x - 4) + 1
= 3x^2 + 6x - 12 + 1
= 3x^2 + 6x - 11.