Respuesta :

Answer:

belpw

Explanation:

Ver imagen beingteenowfmao

The distance prior to the sliding friction dispersing her energy would be:

- The distance will remain unaffected by the sliding friction i.e. 354m

As we know, When Sliding friction dissolves her energy, leading her Kinetic Energy to turn 0 on coming to the state of rest. So,

[tex]1/2 mv^2 - 1/2 mu^2 = -W[/tex]            (∵ Work in -ve denotes it is done opposite to friction)

Given that,

m(mass) [tex]= 50 kg[/tex]

v(velocity) [tex]= 30 km/hr[/tex] or [tex]8.33 m/s[/tex]

The coefficient of Kinetic Friction [tex]= 0.01[/tex]

g(gravitational force) [tex]= 9.8 m/s^2[/tex]

Initial Velocity(u) [tex]= 30[/tex] × [tex]1000/3600 m/s[/tex]

[tex]= 8.33 m/s[/tex]

Now by employing the provided values,

[tex]F =[/tex] μ[tex]mg[/tex]

[tex]= (0.01) (50) (9.8)[/tex]

[tex]= 4.9[/tex]

[tex]F = 4.9 N[/tex]

By using the above expression, we will find the distance;

[tex]1/2 mv^2 - 1/2 mu^2 = -W[/tex]

⇒ [tex]1/2 (50) (0)^2 - 1/2 (50) (8.33)^2 = -4.9(S)[/tex]

⇒ [tex]1734.7225 = 4.9S[/tex]

⇒ [tex]S = 1734.7225/4.9[/tex]

[tex]S = 354 m[/tex]

Because [tex]1/2 mv^2 - 1/2 mu^2 = -W[/tex]  [tex]= -[/tex] μmgS

⇒ [tex]S = (u^2 - v^2)[/tex]/2μ[tex]g[/tex]

Thus, the distance will remain unaffected by the sliding friction i.e. 354m

Learn more about "Friction" here:

brainly.com/question/2122951