Respuesta :

Answer:

a) [tex]SA = 522.9~cm^2[/tex]

b) [tex] V_{cone} = 670.2~cm^3 [/tex]

c) [tex] V_{empty} = 1340.4~cm^3 [/tex]

Step-by-step explanation:

a)

For a cone,

[tex] SA = \pi r (L + r) [/tex]

where L = slant height

[tex] L = \sqrt{r^2 + h^2} [/tex]

We have r = 8 cm; h = 10 cm

[tex]L = \sqrt{(8~cm)^2 + (10~cm)^2}[/tex]

[tex]L = \sqrt{164~cm^2}[/tex]

[tex]SA = (\pi)(8~cm)(\sqrt{164~cm^2} + 8~cm)[/tex]

[tex]SA = 522.9~cm^2[/tex]

b)

[tex] V_{cone} = \dfrac{1}{3}\pi r^2 h [/tex]

[tex] V_{cone} = \dfrac{1}{3}(\pi)(8~cm)^2(10~cm) [/tex]

[tex] V_{cone} = 670.2~cm^3 [/tex]

c)

[tex] V_{cylinder} = \pi r^2 h [/tex]

empty space = volume of cylinder - volume of cone

[tex] V_{empty} = V_{cylinder} - V_{cone} [/tex]

[tex] V_{empty} = \pi r^2 h - \dfrac{1}{3}\pi r^2 h [/tex]

[tex] V_{empty} = (\pi)(8~cm)^2(10~cm) - \dfrac{1}{3}(\pi)(8~cm)^2(10~cm) [/tex]

[tex] V_{empty} = 1340.4~cm^3 [/tex]