Q2/Deceleration of a particle is based on relation a=-3 v² m/s² where v in m/s. If it moves along a straight line and has velocity 10 m/s and position s = 8m when t=0, determine its velocity and position when t= 3 s. Where the velocity become zero. Discuss briefly.​

Respuesta :

Explanation:

Given: a = -3v^2

By definition, the acceleration is the time derivative of velocity v:

[tex]a = \frac{dv}{dt} = - 3 {v}^{2} [/tex]

Re-arranging the expression above, we get

[tex] \frac{dv}{ {v}^{2} } = - 3dt[/tex]

Integrating this expression, we get

[tex] \int \frac{dv}{ {v}^{2} } = \int {v}^{ - 2}dv = - 3\int dt[/tex]

[tex] - \frac{1}{v} = - 3t + k[/tex]

Since v = 10 when t = 0, that gives us k = -1/10. The expression for v can then be written as

[tex] - \frac{1}{v} = - 3t - \frac{1}{10} = - ( \frac{30 + 1}{10} )[/tex]

or

[tex]v = \frac{10}{30t +1 } [/tex]

We also know that

[tex]v = \frac{ds}{dt} [/tex]

or

[tex]ds = vdt = \frac{10 \: dt}{30t + 1} [/tex]

We can integrate this to get s:

[tex]s = \int v \: dt = \int ( \frac{10}{30t + 1}) \: dt = 10 \int \frac{dt}{30t + 1} [/tex]

Let u = 30t +1

du = 30dt

so

[tex] \int \frac{dt}{30t + 1} = \frac{1}{30} \int \frac{du}{u} = \frac{1}{30}\ln |u| + k[/tex]

[tex]= \frac{1}{30}\ln |30t + 1| + k[/tex]

So we can now write s as

[tex]s = \frac{1}{3}\ln |30t + 1| + k[/tex]

We know that when t = 0, s = 8 m, therefore k = 8 m.

[tex]s = \frac{1}{3}\ln |30t + 1| + 8[/tex]

Next, we need to find the position and velocity at t = 3 s. At t = 3 s,

[tex]v = \frac{10}{30(3) +1 } = \frac{10}{91}\frac{m}{s} = 0.11 \: \frac{m}{s} [/tex]

[tex]s = \frac{1}{3}\ln |30(3) + 1| + 8 = 9.5 \: m[/tex]

Note: velocity approaches zero as t --> [tex]\infty [/tex]