Answer:
[tex]C(d) = \frac{1}{5}d + 320[/tex]
Step-by-step explanation:
Given
[tex]d \to miles[/tex]
[tex]C \to cost[/tex]
So:
[tex](d_1,C_1) = (500,420)[/tex] --- May
[tex](d_2,C_2) = (620,444)[/tex] --- June
Required
Express as a function
Start by calculating the slope (m)
[tex]m = \frac{\triangle C}{\triangle d}[/tex]
[tex]m = \frac{444-420}{620-500}[/tex]
[tex]m = \frac{24}{120}[/tex]
Simplify
[tex]m = \frac{1}{5}[/tex]
The equation is:
[tex]C(d) = m(d - d_1) +C_1[/tex]
[tex]C(d) = \frac{1}{5}(d - 500) +420[/tex]
[tex]C(d) = \frac{1}{5}d - 100 +420[/tex]
Take LCM
[tex]C(d) = \frac{1}{5}d + 320[/tex]