An object is taken from an oven at 350o F and left to cool in a room at 70o F. If the temperature fell to 250o F in one hour, what would its temperature be 4 hours after it was removed from the oven

Respuesta :

Answer:

117.83° F

Explanation:

Using Newton's Law of Cooling which can be expressed as:

[tex]\dfrac{dT}{dt}= k(T-T_1)[/tex]

The differential equation can be computed as:

[tex]\dfrac{dT}{dt}= k(T-70)[/tex]

[tex]\dfrac{dT}{(T-70)}= kdt[/tex]

[tex]\int \dfrac{dT}{(T-70)}= \int kdt[/tex]

[tex]In|T-70| = kt +C[/tex]

[tex]T- 70 = e^{kt+C} \\ \\ T = 70+e^{kt+C} \\ \\ T = 70 + C_1e^{kt} --- (1)[/tex]

where;

[tex]C_1 = e^C[/tex]

At the initial condition, T(0)= 350

[tex]350 = 70 C_1^{k*0}[/tex]

[tex]350 -70 = C_1[/tex]

[tex]280 = C_1[/tex]

replacing [tex]C_1[/tex]= 280 into (1)

Hence, the differential equation becomes:

[tex]T(t) = 70 + 280 e^{kt}[/tex]

when;

time (t) = 1 hour

T(1) = 250

Since;

[tex]250 = 70 + 280 e^{k*1}[/tex]

[tex]180 = 280e^k \\ \\ \dfrac{180}{280}= e^k[/tex]

[tex]k = In (\dfrac{180}{280})[/tex]

k = -0.4418

Therefore;

T(t) = 70 + 280e^{(-0.4418)}t

After 4 hours, the temperature is:

T(t) = 70 + 280e^{(-0.4418)}4

T(4) = 117.83° F