contestada

find the absolute maximum and the absolute minimum of the given function on the given interval f(x)=xe^x/2 on [-3,1]

Respuesta :

Answer:

View the graph for a visual

Step-by-step explanation:

Ver imagen goddessboi

Answer:

Step-by-step explanation:

[tex]f(x)=xe^{\frac{x}{2} } \\f'(x)=x*\frac{1}{2} e^{\frac{x}{2} } +e^{\frac{x}{2} } =e^{\frac{x}{2} } (\frac{x}{2} +1)\\[/tex]

f'(x)=0, gives x=-2

we find f(x) at x=-3,-2,1

f(-3)=-3e^(-3/2)≈-0.67

f(-2)=-2e^(-2/2)=-2e^{-1}=-2/e≈-0.74

f(1)=1 e^(1/2)=√e≈1.65