Respuesta :
Answer:
Step-by-step explanation:
[tex]f(x)=xe^{\frac{x}{2} } \\f'(x)=x*\frac{1}{2} e^{\frac{x}{2} } +e^{\frac{x}{2} } =e^{\frac{x}{2} } (\frac{x}{2} +1)\\[/tex]
f'(x)=0, gives x=-2
we find f(x) at x=-3,-2,1
f(-3)=-3e^(-3/2)≈-0.67
f(-2)=-2e^(-2/2)=-2e^{-1}=-2/e≈-0.74
f(1)=1 e^(1/2)=√e≈1.65