The altitude of a triangle is increasing at a rate of 1.5 1.5 centimeters/minute while the area of the triangle is increasing at a rate of 1.5 1.5 square centimeters/minute. At what rate is the base of the triangle changing when the altitude is 8 8 centimeters and the area is 88 88 square centimeters

Respuesta :

Answer:

The base reduces at 3.75cm/min

Step-by-step explanation:

Given

Let

[tex]h \to altitude[/tex]

[tex]b \to base[/tex]

[tex]A \to Area[/tex]

So:

[tex]\frac{dh}{dt} = 1.5cm/min[/tex]

[tex]\frac{dA}{dt} = 1.5^2cm/min[/tex]

The area of a triangle is:

[tex]A = \frac{1}{2}bh[/tex]

Calculate b when [tex]A =88cm^2; h =8cm[/tex]

[tex]A = \frac{1}{2}bh[/tex]

[tex]88=\frac{1}{2} * b * 8[/tex]

[tex]88 =b * 4[/tex]

Solve for b

[tex]b = 88/4[/tex]

[tex]b = 22[/tex]

We have:

[tex]A = \frac{1}{2}bh[/tex]

Differentiate with respect to time

[tex]\frac{dA}{dt} =\frac{1}{2}(h\frac{db}{dt} + b\frac{dh}{dt})[/tex]

Substitute the following values in the above equation

[tex]\frac{dh}{dt} = 1.5cm/min[/tex]        [tex]\frac{dA}{dt} = 1.5^2cm/min[/tex]      [tex]b = 22[/tex]     [tex]h = 8[/tex]

[tex]1.5 = \frac{1}{2}(8 * \frac{db}{dt} + 22 * 1.5)[/tex]

Multiply both sides by 2

[tex]3 = 8 * \frac{db}{dt} + 22 * 1.5[/tex]

[tex]3 = 8 * \frac{db}{dt} + 33[/tex]

Collect like terms

[tex]8 * \frac{db}{dt} = 3 -33[/tex]

[tex]8 * \frac{db}{dt} = -30[/tex]

Divide both sides by 8

[tex]\frac{db}{dt} = -\frac{30}{8}[/tex]

[tex]\frac{db}{dt} = -3.75[/tex]