Answer:
secA = [tex]\frac{65}{63}[/tex]
Step-by-step explanation:
cscA = [tex]\frac{65}{16}[/tex] = [tex]\frac{hypotenuse}{opposite}[/tex]
This is a right triangle with hypotenuse = 65, opposite = 16 and
adjacent = [tex]\sqrt{65^2-16^2}[/tex] = 63
Then
secA = [tex]\frac{hypotenuse}{adjacent}[/tex] = [tex]\frac{65}{63}[/tex]