A packaging system fills boxes to an average weight of 16 ounces with a standard deviation of 0.3 ounce. It is reasonable to assume that the weights are normally distributed. Calculate the 1st, 2nd, and 3rd quartiles of the box weight.

Respuesta :

Answer:

[tex]Q_1 = 15.8[/tex]

[tex]Q_2 = 16[/tex]

[tex]Q_3 = 16.2[/tex]

Step-by-step explanation:

Given

[tex]\bar x = 16[/tex] ---- the average

[tex]\sigma = 0.3[/tex] -- standard deviation

Required

The 1st to 3rd quartile

Since the distribution is normal, then:

[tex]Median = Mean[/tex]

i.e.

[tex]Median = \bar x[/tex]

So, we have:

[tex]Median = 16[/tex]

Rewrite Median as Q2

[tex]Q_2 = 16[/tex]

To solve for Q1 and Q3, we use the following formula

[tex]\frac{Q_3 - Q_1}{2} =\frac{2}{3} * \sigma[/tex]

Multiply both sides by 2

[tex]Q_3 - Q_1 =\frac{4}{3} * \sigma[/tex]

Substitute [tex]\sigma = 0.3[/tex]

[tex]Q_3 - Q_1 =\frac{4}{3} * 0.3[/tex]

[tex]Q_3 - Q_1 =0.4[/tex]

Also, we have:

[tex]Q_3 - Q_2 = Q_2 - Q_1[/tex] ----- quadrants are equidistant

Rewrite as:

[tex]Q_3 + Q_1 = Q_2 + Q_2[/tex]

[tex]Q_3 + Q_1 = 2Q_2[/tex]

Substitute: [tex]Q_2 = 16[/tex]

[tex]Q_3 + Q_1 = 2*16[/tex]

[tex]Q_3 + Q_1 = 32[/tex]

Make Q3 the subject

[tex]Q_3 = 32 - Q_1[/tex]

Substitute [tex]Q_3 = 32 - Q_1[/tex] in [tex]Q_3 - Q_1 =0.4[/tex]

[tex]32 - Q_1 - Q_1 = 0.4[/tex]

Collect like terms

[tex]Q_1 + Q_1 = 32-0.4[/tex]

[tex]2Q_1 = 31.6[/tex]

Divide by 2

[tex]Q_1 = 15.8[/tex]

Substitute [tex]Q_1 = 15.8[/tex] in [tex]Q_3 = 32 - Q_1[/tex]

[tex]Q_3 = 32 - 15.8[/tex]

[tex]Q_3 = 16.2[/tex]