Respuesta :

Answer:

[tex]y = \frac{3}{2}\sin(6x) + \frac{15}{2}[/tex]

Step-by-step explanation:

Given

[tex]T = 60[/tex] --- period

[tex]\{y = ER| 6 \le y \le 9\}[/tex] --- range

Required

The sine function

A sine function is represented as:

[tex]y = A\sin[k(x - d)] + c[/tex]

Where:

[tex]amplitude = |A|[/tex]

and

[tex]T = \frac{360^o}{|k|}[/tex]

[tex]A = \frac{|y_{max} - y_{min}|}{2}[/tex]

and

[tex]c = \frac{y_{min} + y_{max}}{2}[/tex]

Given that the range is:[tex]\{y = ER| 6 \le y \le 9\}[/tex]

This implies that:

[tex]y_{min} = 6[/tex]

[tex]y_{max} = 9[/tex]

So, we have:

[tex]A= \frac{|9-6|}{2}[/tex]

[tex]A= \frac{|3|}{2}[/tex]

Remove absolute bracket

[tex]A= \frac{3}{2}[/tex]

Next, calculate k

[tex]T = \frac{360^o}{|k|}[/tex]

[tex]60 = \frac{360^o}{|k|}[/tex]

Make |k| the subject

[tex]|k| = \frac{360^o}{60}[/tex]

[tex]|k| = 6[/tex]

Remove absolute bracket

[tex]k = 6[/tex]

Next, calculate c

[tex]c = \frac{y_{min} + y_{max}}{2}[/tex]

[tex]c = \frac{6 + 9}{2}[/tex]

[tex]c = \frac{15}{2}[/tex]

So, we have:

[tex]y = A\sin[k(x - d)] + c[/tex]

[tex]y = \frac{3}{2}\sin[6(x -d)] + \frac{15}{2}[/tex]

Set d to 0

[tex]y = \frac{3}{2}\sin(6x) + \frac{15}{2}[/tex]