Answer:
the required speed with which the missile move relative to the Earth is -0.727c
Explanation:
Given the data in the question;
relative velocity relation;
u' = u-v / 1 - [tex]\frac{uv}{c^2}[/tex]
so let V[tex]_B[/tex] represent the velocity as seen by an external reference frame; u=V[tex]_B[/tex]
and let V[tex]_A[/tex] represent the speed of the secondary reference frame; v=V[tex]_A[/tex]
hence, u' is the speed of B as seen by A
so
u' = V[tex]_B[/tex]-V[tex]_A[/tex] / 1 - [tex]\frac{V_BV_A}{c^2}[/tex]
now, given that; V[tex]_A[/tex] = 0.9c and V[tex]_B[/tex] = 0.5c
we substitute
u' = ( 0.5c - 0.9c ) / 1 - [tex]\frac{(0.5c)(0.9c)}{c^2}[/tex]
u' = ( 0.5c - 0.9c ) / 1 - [tex]\frac{c^2(0.5)(0.9)}{c^2}[/tex]
u' = ( 0.5c - 0.9c ) / 1 - (0.5 × 0.9)
u' = ( -0.4c ) / 1 - 0.45
u' = -0.4c / 0.55
u' = -0.727c
Therefore, the required speed with which the missile move relative to the Earth is -0.727c