Victor draws one side of equilateral ∆PQR on the coordinate plane at points P (–9, –2) and Q (–2, –2). What are the two possible coordinates of vertex R? Round to the nearest tenth.

Respuesta :

Answer: [tex](-5.5,4.062)\ \text{and}\ (-5.5,-8.062)[/tex]

Step-by-step explanation:

Given

The two vertices of a equilateral triangle are [tex](-9,-2)\ \text{and}\ (-2,-2)[/tex]

Suppose the third vertex is [tex](x,y)[/tex]

Side length in equilateral triangle are equal.

[tex]\Rightarrow \sqrt{\left( -2+9\right)^2+\left( -2+2\right)^2}=\sqrt{\left( x+9\right)^2+\left( y+2\right)^2}\\\text{squaring both sides}\\\\\Rightarrow 7^2=\left( x+9\right)^2+\left( y+2\right)^2\quad \ldots(i)\\\\[/tex]

Similarly,

[tex]\Rightarrow \sqrt{\left( -2+9\right)^2+\left( -2+2\right)^2}=\sqrt{\left( x+2\right)^2+\left( y+2\right)^2}\\\\\Rightarrow 7^2=\left( x+2\right)^2+\left( y+2\right)^2\quad \ldots(ii)[/tex]

Subtract (i) and (ii)

[tex]\Rightarrow \left( x+9\right)^2-\left(x+2\right)^2=7^2-7^2\\\\\Rightarrow (x+9+x+2)(x+9-x-2)=0\\\Rightarrow (2x+11)7=0\\\\\Rightarrow x=-\dfrac{11}{2}[/tex]

Insert the value of [tex]x[/tex] in equation (ii)

[tex]\Rightarrow \left(-5.5+2\right)^2+\left(y+2\right)^2=7^2\\\\\Rightarrow \left(-5.5+2\right)^2+\left(y+2\right)^2-\left(-5.5+2\right)^2=7^2-\left(-5.5+2\right)^2\\\\\Rightarrow \left(y+2\right)^2=36.75\\\\\Rightarrow y=4.06217\dots ,\:y=-8.06217[/tex]

So, two possible vertex are [tex](-5.5,4.062)\ \text{and}\ (-5.5,-8.062)[/tex]