A population of mice is increasing exponentially. On Monday there were 120 mice. One month later there were 132 mice. Write a function to model this situation. Determine the percent increase of the population of mice each month.

Respuesta :

Answer:

[tex]y =120*1.1^x[/tex]

[tex]r = 10\%[/tex] --- Percentage increase

Step-by-step explanation:

Given

Let

[tex]x \to months[/tex]

[tex]y \to mice[/tex]

So, we have:

[tex](x_1,y_1) = (0,120)[/tex] --- Monday

[tex](x_2,y_2) = (1,132)[/tex] --- One month later

Required

The function

The function is represented as:

[tex]y = ab^x[/tex]

In [tex](x_1,y_1) = (0,120)[/tex], we have:

[tex]120 =a * 1[/tex]

[tex]120 =a[/tex]

Rewrite as:

[tex]a = 120[/tex]

In [tex](x_2,y_2) = (1,132)[/tex], we have:

[tex]132 = a * b^1[/tex]

[tex]132 = a * b[/tex]

Substitute [tex]a = 120[/tex]

[tex]132 = 120 * b[/tex]

Solve for b

[tex]b = \frac{132}{120}[/tex]

[tex]b = 1.1[/tex]

Recall that:

[tex]y = ab^x[/tex]

Hence, the function is:

[tex]y =120*1.1^x[/tex]

To get the monthly percentage increase (r), we have:

[tex]y = a(1 + r)^x[/tex]

Compare to: [tex]y = ab^x[/tex]

So:

[tex]1+r =b[/tex]

Make r the subject

[tex]r = b-1[/tex]

[tex]r = 1.1-1[/tex]

[tex]r = 0.1[/tex]

Express as percentage

[tex]r = 0.1*100\%[/tex]

[tex]r = 10\%[/tex]