Respuesta :
Answer:
[tex]\displaystyle x=\frac{-1 \pm i\sqrt{535}}{2}[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
- Left to Right
Algebra I
- Multiple Roots
- Standard Form: ax² + bx + c = 0
- Quadratic Formula: [tex]\displaystyle x=\frac{-b \pm \sqrt{b^2-4ac}}{2a}[/tex]
Algebra II
- Imaginary Root i = √-1
Step-by-step explanation:
Step 1: Define
Identify
2x² + x + 67 = 0
a = 2
b = 1
c = 67
Step 2: Solve for x
- Substitute in variables [Quadratic Formula]: [tex]\displaystyle x=\frac{-1 \pm \sqrt{1^2-4(2)(67)}}{2(1)}[/tex]
- Multiply: [tex]\displaystyle x=\frac{-1 \pm \sqrt{1^2-4(2)(67)}}{2}[/tex]
- [√Radical] Evaluate exponents: [tex]\displaystyle x=\frac{-1 \pm \sqrt{1-4(2)(67)}}{2}[/tex]
- [√Radical] Multiply: [tex]\displaystyle x=\frac{-1 \pm \sqrt{1-536}}{2}[/tex]
- [√Radical] Subtract: [tex]\displaystyle x=\frac{-1 \pm \sqrt{-535}}{2}[/tex]
- [√Radical] Simplify: [tex]\displaystyle x=\frac{-1 \pm i\sqrt{535}}{2}[/tex]