A buffer solution contains 0.475 M nitrous acid and 0.302 M sodium nitrite . If 0.0224 moles of potassium hydroxide are added to 150 mL of this buffer, what is the pH of the resulting solution

Respuesta :

Answer: The pH of the resulting solution will be 3.001

Explanation:

Molarity is calculated by using the equation:

[tex]\text{Molarity}=\frac{\text{Moles}}{\text{Volume}}[/tex]          ......(1)

We are given:

Moles of NaOH = 0.0224 moles

Molarity of nitrous acid = 0.475 M

Molarity of sodium nitrite = 0.302 M

Volume of solution = 150 mL = 0.150 L          (Conversion factor: 1 L = 1000 mL)

Putting values in equation 1, we get:

[tex]\text{Moles of nitrous acid}=(0.475mol/L\times 0.150L)=0.07125mol[/tex]

[tex]\text{Moles of sodium nitrite}=(0.302mol/L\times 0.150L)=0.0453mol[/tex]

The chemical equation for the reaction of nitrous acid and NaOH follows:

                   [tex]HNO_2+NaOH\rightleftharpoons NaNO_2+H_2O[/tex]

I:                0.07125     0.0224     0.0453

C:             -0.0224     -0.0224   +0.0224

E:              0.04885         -          0.0677

The power of the acid dissociation constant is the negative logarithm of the acid dissociation constant. The equation used is:

[tex]pK_a=-\log K_a[/tex]        ......(2)

We know:

[tex]K_a[/tex] for nitrous acid = [tex]7.2\times 10^{-4}[/tex]

Using equation 2:

[tex]pK_a=-\log (7.2\times 10^{-4})=3.143[/tex]

To calculate the pH of the acidic buffer, the equation for Henderson-Hasselbalch is used:

[tex]pH=pK_a+ \log \frac{\text{[conjugate base]}}{\text{[acid]}}[/tex]         .......(3)

Given values:

[tex][NaNO_2]=\frac{0.0677}{0.150}[/tex]

[tex][HNO_2]=\frac{0.04885}{0.150}[/tex]

[tex]pK_a=3.143[/tex]

Putting values in equation 3. we get:

[tex]pH=3.143-\log \frac{(0.0677/0.150)}{(0.04885/0.150)}\\\\pH=3.143-0.142\\\\pH=3.001[/tex]

Hence, the pH of the resulting solution will be 3.001