What is the result of a dilation of scale factor 3 centered at the origin of the line 2y + 3x=10?? PLEASE HELP PLEASEEEEEEEEE

Respuesta :

Given:

The equation of a line is:

[tex]2y+3x=10[/tex]

The line is dilated by factor 3.

To find:

The result of dilation.

Solution:

The equation of a line is:

[tex]2y+3x=10[/tex]

For [tex]x=0[/tex],

[tex]2y+3(0)=10[/tex]

[tex]2y+0=10[/tex]

[tex]y=\dfrac{10}{2}[/tex]

[tex]y=5[/tex]

For [tex]x=2[/tex],

[tex]2y+3(2)=10[/tex]

[tex]2y+6=10[/tex]

[tex]2y=10-6[/tex]

[tex]2y=4[/tex]

Divide both sides by 2.

[tex]y=\dfrac{4}{2}[/tex]

[tex]y=2[/tex]

The given line passes through the two points A(0,5) and B(2,2).

If the line dilated by factor 3 with origin as center of dilation, then

[tex](x,y)\to (3x,3y)[/tex]

Using this rule, we get

[tex]A(0,5)\to A'(3(0),3(5))[/tex]

[tex]A(0,5)\to A'(0,15)[/tex]

Similarly,

[tex]B(2,2)\to B'(3(2),3(2))[/tex]

[tex]B(2,2)\to B'(6,6)[/tex]

The dilated line passes through the points A'(0,15) and B'(6,6). So, the equation of dilated line is:

[tex]y-y_1=\dfrac{y_2-y_1}{x_2-x_1}(x-x_1)[/tex]

[tex]y-15=\dfrac{6-15}{6-0}(x-0)[/tex]

[tex]y-15=\dfrac{-9}{6}(x)[/tex]

[tex]y-15=\dfrac{-3}{2}x[/tex]

Multiply both sides by 2.

[tex]2(y-15)=-3x[/tex]

[tex]2y-30=-3x[/tex]

[tex]2y+3x=30[/tex]

Therefore, the equation of the line after the dilation is [tex]2y+3x=30[/tex].