Answer:
[tex]\triangle d=47.69 Knots[/tex]
Step-by-step explanation:
Distance of Ship A from B [tex]d_1=10 West[/tex]
Speed of Ship A [tex]V_a=17 knots West[/tex]
Speed of Ship A [tex]V_b=25 knots North[/tex]
Generally the equation for Rate of distance change is mathematically given by
[tex]\triangle d=\frac{1}{2\sqrt{(17t+10)^2+(25t)^2}}*\triangle t[17t+10^2+25t^2][/tex]
[tex]\triangle d=\frac{578+340+1250}{2\sqrt{(17t+10)^2+(25t)^2}}[/tex]
Therefore with
t=>4PM
We substitute
[tex]\triangle d=\frac{882(4)+420+648(4)}{2\sqrt(21(4)+10^2)+(18(4))^2}[/tex]
[tex]\triangle d=47.69 Knots[/tex]