The Food Marketing Institute shows that 17% of households spend more than $100 per week on groceries. Assume the population proportion is p = 0.17 and a sample of 900 households will be selected from the population. Use z-table.

a. Calculate σ(p), the standard error of the proportion of households spending more than $100 per week on groceries (to 4 decimals).
b. What is the probability that the sample proportion will be within +/- 0.02 of the population proportion (to 4 decimals)?
c. What is the probability that the sample proportion will be within +/- 0.02 of the population proportion for a sample of 1,400 households (to 4 decimals)?

Respuesta :

Answer:

The right answer is:

(a) 0.01252

(b) 0.8882

(c) 0.9544

Step-by-step explanation:

Given:

Population proportion,

P = 0.17

Sample size,

n = 900

(a)

The standard error of proportion will be:

⇒ [tex]SE_p=\sqrt{\frac{P(1-P)}{n} }[/tex]

By putting the values, we get

           [tex]=\sqrt{\frac{0.17(1-0.17)}{900} }[/tex]

           [tex]=\sqrt{0.000158}[/tex]

           [tex]=0.01252[/tex]

(b)

We know that,

[tex]\hat{P}-P=\pm 0.02[/tex]

Now,

⇒ [tex]z=\frac{\hat{P}-P}{\sqrt{\frac{P(1-P)}{n} } }[/tex]

By substituting the values, we get

      [tex]=\frac{\pm 0.02}{\sqrt{\frac{0.17(1-0.17)}{900} } }[/tex]

      [tex]=\frac{\pm 0.02}{0.01252}[/tex]

      [tex]=\pm 1.59[/tex]

⇒ [tex]P(I\hat{P}-PI<0,02)=P(-1.59<z<1.59)[/tex]

                                   [tex]=1-2P(z<-1.59)[/tex]

                                   [tex]=1-2(0.0559)[/tex]

                                   [tex]=0.8882[/tex]

(c)

We know that,

[tex]\hat{P}-P=\pm 0.02[/tex]  

[tex]n = 1400[/tex]

Now,

⇒ [tex]z=\frac{\hat{P}-P}{\sqrt{\frac{P(1-P)}{n} } }[/tex]

By substituting the values, we get

      [tex]=\frac{\pm 0.02}{\sqrt{\frac{0.17(1-0.17)}{1400} } }[/tex]

      [tex]=\frac{\pm 0.02}{0.01}[/tex]

      [tex]=\pm 2[/tex]

⇒ [tex]P(I \hat P-PI<0.02)=P(-2<z<2)[/tex]

                                   [tex]=1-2P(z<-2)[/tex]

                                   [tex]=1-2(0.0228)[/tex]

                                   [tex]=0.9544[/tex]