Find the lengths of the diagonals of rectangle WXYZ.
WY = 62 – 7
XZ = 3x + 2
The length of each diagonal is
units.

Find the lengths of the diagonals of rectangle WXYZ WY 62 7 XZ 3x 2 The length of each diagonal is units class=

Respuesta :

S O L U T I O N :

According to the question,

  • WY = (6x - 7) units
  • XZ = (3x + 2) units

As we know that,

Diagonals of a rectangle are equal.

[tex] \\ \twoheadrightarrow \sf { WY = XZ} \\ [/tex]

[tex] \\ \twoheadrightarrow \sf { 6x - 7 = 3x +2} \\ [/tex]

[tex] \\ \twoheadrightarrow \sf { 6x - 3x = 2 + 7} \\ [/tex]

[tex] \\ \twoheadrightarrow \sf { 3x = 9} \\ [/tex]

[tex] \\ \twoheadrightarrow \sf {x =\dfrac{9}{3} } \\ [/tex]

[tex] \\ \twoheadrightarrow \bf\underline { x = 3} \\ [/tex]

Therefore,

[tex] \\ \twoheadrightarrow \sf { WY \; \& \; XZ = (3x - 2) \; units} \\ [/tex]

  • Since, WY = XZ

[tex] \\ \twoheadrightarrow \sf { WY \; \& \; XZ = 3(3) + 2 \; units} \\ [/tex]

[tex] \\ \twoheadrightarrow \sf { WY \; \& \; XZ = 9 + 2 \; units} \\ [/tex]

[tex] \\ \twoheadrightarrow \bf\underline { WY \; \& \; XZ = 11\; units} \\ [/tex]

Therefore, length of each diagonal is 11 units.

Ver imagen KimYurii