You are the product manager for Joe Totter Supermarket. You are interested in validating the contents of the one-pound bags of Keen potato chips. You select a random sample of 9 bags and empty the contents of each bag, one at a time, onto a scale and record the weights in pounds. Below are the recorded sample weights:

1.11.21.00.91.11.31.21.1

Assuming the weights of potato chips are normally distributed, estimate the mean weight of a bag of Keen potato chips using a 95% confidence interval.

Respuesta :

Answer:

Hence, the mean of the potato chips lie between the interval [tex](1.006, 1.194)[/tex]

Given :

data is :

  [tex]1.1,1.2,1.0,0.9,1.1,1.3,1.2,1.1,1.0[/tex]

Confidence level is [tex]95\%[/tex].

To find :

Confidence interval.

Explanation :

Mean [tex]\bar{x}[/tex] [tex]=\frac{\sum x}{n}[/tex]

  [tex]\Rightarrow \bar{x}=\frac{1.1+1.2+1.0+0.9+1.1+1.3+1.2+1.1+1.0}{9}[/tex]

  [tex]\Rightarrow \bar{x}=\frac{9.9}{9}[/tex]

 [tex]\Rightarrow \bar{x}=1.1[/tex]

Standard deviation [tex]\sigma[/tex] [tex]=\sqrt{\frac{\sum (x-\bar{x})^2}{n-1}}[/tex]

   [tex]\Rightarrow \sigma=\sqrt{\frac{\sum (x-\bar{x})^2}{n-1}}=0.122[/tex]

here, [tex]\alpha=1-\;\text{confidence level}[/tex]

     [tex]\Rightarrow \alpha=1-0.95=0.05[/tex]

[tex]Z_{\frac{\alpha}{2}}=Z_{0.05}=2.306[/tex] by the Z- table

[tex]95\%[/tex] confidence interval is :

    [tex]\bar{x}\pm Z_{\frac{\alpha}{2}}\times \frac{\sigma}{\sqrt{n}}[/tex]

[tex]\Rightarrow 1.1\pm 2.306\times \frac{0.122}{\sqrt{9}}[/tex]

[tex]\Rightarrow 1.1\pm 2.306\times \frac{0.122}{3}[/tex]

[tex]\Rightarrow 1.1\pm 0.094[/tex]

[tex]\Rightarrow (1.006, 1.194)[/tex]

Therefore, the mean of the potato chips lie between the interval [tex](1.006, 1.194)[/tex]