In an old Sesame Street skit, Kermit the Frog interviewed a local resident on the planet Koozebane, who measures time in gleeps and distance in glorps. One glorp is defined as the distance a rock will fall from rest in one gleep. How far will a rock fall from rest during the second gleep

Respuesta :

Answer:

four glorps

Explanation:

We know :

[tex]$y=v_{0y}t + \frac{1}{2}a_yt^2$[/tex]

[tex]$\Rightarrow -1 \text{glorp} = 0 - \frac{g}{2} \times (1 g\text{ gleep})^2$[/tex]

[tex]$\Rightarrow 1 \text{ glorp}= \frac{g}{2} (1 \text{ gleep})^2$[/tex]   .............(i)

Now, t' = 2 gleep

[tex]$y=v_{0y}t + \frac{1}{2}a_yt^2$[/tex]

  [tex]$=0+ \frac{-g}{2} (2 \text{ gleep})^2$[/tex]

  [tex]$=-\frac{4g}{2}(2 \text{ gleep})^2$[/tex]

 [tex]$=4\left[\frac{-g}{2} (\text{gleep})^2\right]$[/tex]

 = 4 (-1 gleep)     (From (i))

So, |y| = 4 glorp