Answer:
2901 vehicles
Explanation:
We are given;
Percentage of large trucks & buses; p_t = 7% = 0.07
Percentage of recreational vehicles; p_r = 3% = 0.03
PHF = 0.90
Driver population adjustment; f_p = 0.92
First of all, let's Calculate the heavy vehicle factor from the formula;
f_hv = 1/[1 + p_t(e_t - 1) + p_r(e_r - 1)]
Where;
e_t = passenger car equivalents for trucks and buses
e_r = passenger car equivalents for recreational vehicles
From the table attached, for a mountainous terrain, e_t = 6 and e_r = 4. Thus;
f_hv = 1/[1 + 0.07(6 - 1) + 0.03(4 - 1)]
f_hv = 1.44
Let's now calculate the initial hourly volume from the formula;
v_p = V1/(PHF × N × f_hv × f_p)
Where;
v_p = 15-minute passenger-car equivalent flow rate
V1 = hourly volume
N = number of lanes in each direction
From online tables of LOS criteria for multilane freeway segments, v_p = 1300 pc/hr/ln
Thus;
1300 = V1/(0.9 × 3 × 1.44 × 0.92)
V1 = 1300 × (0.9 × 3 × 1.44 × 0.92)
V1 = 4650 veh/hr
Now, let's Calculate the final hourly volume;
From online sources, the maximum capacity of a 6 lane highway with free-flow speed of 50 mi/h is 2000 pc/hr/ln.
We are told the online peak-hour factor increases to 0.95 and so PHF = 0.95.
Thus;
2000 = V2/(0.95 × 3 × 1.44 × 0.92)
V2 = 2000(0.95 × 3 × 1.44 × 0.92)
V2 = 7551 veh/hr
Number of vehicles added to the highway = V2 - V1 = 7551 - 4650 = 2901 vehicles