A manufacturer produces widgets that are packaged in boxes of 100. The probability of a widget being defective is 0.021. Find the mean and standard deviation for the number of defective widgets in a box.

Respuesta :

Answer:

[tex]\=x=2.1[/tex]

[tex]\sigma=2.03[/tex]

Step-by-step explanation:

From the question we are told that:

Sample size[tex]n=100[/tex]

Probability of  a defective widget [tex]P=0.021[/tex]

Generally the equation for binomial trial is mathematically given by

 [tex]q=1-p[/tex]

 [tex]q=1-0.021[/tex]

 [tex]q=0.979[/tex]

Since X is binomial random variable with functions of n and p,The equation of mean \=x

 [tex]\=x=E(x)[/tex]

  Where

  [tex]E(x=n*p)[/tex]

 [tex]\=x=100*0.021[/tex]

 [tex]\=x=2.1[/tex]

Generally the equation for variance \sigma is mathematically given by

 [tex]\sigma=\sqrt{nqp}[/tex]

 [tex]\sigma=\sqrt{200*0.021*0.979}[/tex]

 [tex]\sigma=2.03[/tex]